Как похудеть в домашних условиях.

Секрет похудения в домашних условиях прост: переключиться с сахаросжигающего режима на жиросжигающий


Меньше инсулина, больше жизни

Почему нужно низкий уровень инсулина, если хотим жить дольше?

Физические упражнения могут заменить множество лекарств

Зачем нужны физические упражнения?

99 из 100 принимающих станины не нуждаются в них!

99 из 100 принимающих станины не нуждаются в них!

диета для здоровья, омоложения и долголетия

Диета для здоровья, омоложения и долголетия

подсчет калорий  признали бесполезным занятием

подсчет калорий  признали бесполезным занятием

Эффективность глюкозамина и хондроитина (Хондропротекторы) - миф или реалность?
Прием глюкозамина для суставов равна как плацебо эффект

Как вылечить артериальную гипертензию или гипертонию без лекарств?

Как вылечить артериальную гипертензию без лекарств?

Деволюция человека - человек не произошёл от обезьяны

Деволюция человека - человек не произошёл от обезьяны

Что мужчины должны делать, чтобы женщины не имитировали оргазма?

Что мужчины должны делать, чтобы женщины не имитировали оргазма?

остеопороз не вызвано недостатком кальция

Препараты кальция и молоко не лечат остеопороз!

Лучшая прививка или вакцинация – та, которая не сделана!

Лучшая прививка или вакцинация – та, которая не сделана!

Почему алкоголь в умеренных дозах способствует долголетию?

Почему алкоголь в умеренных дозах способствует долголетию?

Ожирение не наследуется - эпигенетическая болезнь

Ожирение не наследуется - эпигенетическая болезнь

http://zenslim.ru/content/%D0%9F%D0%BE%D1%87%D0%B5%D0%BC%D1%83-%D0%B2%D0%BE%D0%B7%D0%BD%D0%B8%D0%BA%D0%B0%D1%8E%D1%82-%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D1%8B-%D1%81-%D0%BF%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B5%D0%B9

Почему возникают проблемы с потенцией?

Сухие завтраки не полезны, чем жареный сладкий пончик!

Сухие завтраки не полезны, чем жареный сладкий пончик!

частое питание малыми порциями может причинить вред вашему здоровью

частое питание малыми порциями может причинить вред вашему здоровью

В грудном молоке содержится более 700 видов бактерий

В грудном молоке содержится более 700 видов бактерий

Углекислый газ важнее кислорода для жизни

Углекислый газ важнее кислорода для жизни

Активированный уголь – не средство для похудения

Активированный уголь – не средство для похудения

Зачем голодать? Один день голодания омолаживает на 3 месяца

Зачем голодать? Один день голодания омолаживает на 3 месяца

Теория сбалансированного питания и калорийный подход к питанию — ложь

Теория сбалансированного питания и калорийный подход к питанию — ложь

нужно ли кодирование от алкоголизма?

Нужно ли кодирование от алкоголизма?

Благодарность дает силу и научить невозможному

Благодарность дает силу и научить невозможному

Мифы о пользе сыроедения

Мифы о пользе сыроедения

Синий свет сильно подавляет выработку мелатонина и мешает спать!

Синий свет сильно подавляет выработку мелатонина и мешает спать!

структурированная вода и похудение

Четыре благородные истины здорового веса

Как похудеть с инсулинорезистентностью?

Лучший способ набрать вес, это следование ограничительным диетам

Большой живот – причина преждевременной смерти

Если сбросить 5-7% от общего веса тела, то храп прекратится с вероятностью в 50%

Как работает печень

Печень строение, функции, болезни и желчный пузырь Печень - являясь органом пищеварения, выполняет в организме и много других функций. Можно сказать, что этот орган является основной «химической фабрикой» организма. Именно в печени наиболее активно протекают процессы метаболизма различных веществ. Особенно необходимо подчеркнуть то, что многие ядовитые вещества, как поступившие в организм извне, так и образовавшиеся в процессе жизнедеятельности, превращаются в печени в неопасные для организма соединения. Таким образом, печень выполняет и дезинтоксикационную функцию. Заметим, что в дезинтоксикации организма помимо печени очень важную роль играют и почки.
    Второй важнейшей функцией (помимо пищеварительной) поджелудочной железы является выработка абсолютно необходимого для организма гормона - инсулина. Наш очень сложно устроенный организм, естественно, не сможет нормально существовать, если у него не будет определенного способа управления. В качестве органов управления, передачи и переработки информации в организме человека выступают нервная и эндокринная системы.
    Нервная система делится на центральную и периферическую. Центральную нервную систему составляют головной и спинной мозг. Именно сюда поступает, здесь накапливается и анализируется информация от рецепторов, расположенных в самых разных участках нашего организма. В головном мозге обрабатываются и данные (в основном отражающие состояние внешней среды), поступающие от органов чувств: зрения, слуха, обоняния, осязания, вкуса. На основе поступившей информации головной или спинной мозг принимают определенные решения, которые передаются к органам-исполнителям (например, если мы собираемся встать со стула, то мозг отдает мышцам команду двигаться). Решения в центральной нервной системе могут приниматься осознанно (мы можем подумать, стоит ли нам вставать по звонку будильника или можно еще несколько минут полежать в постели). Процессы мышления протекают исключительно на уровне коры головного мозга. В других случаях мы действуем неосознанно (физиологи говорят - инстинктивно), как в приведенном выше примере с отбрасыванием горячего предмета. Но, как уже отмечалось, и в,такой ситуации необходимо участие центральной нервной системы.
    Периферическую нервную систему составляют периферические нервы и нервные окончания. Периферические нервы представляют собой, по сути, очень длинные отростки клеток центральной нервной системы (нейронов). Такие нервы и их окончания пронизывают практически все органы и ткани. Именно по нервам передается информация от центра к периферии и наоборот. Передача информации по нервам происходит в виде электрических импульсов.
    Как мы уже говорили, нервы, по которым информация от органов и тканей поступает в центральную нервную систему, называются чувствительными, а передача информации в обратном порядке происходит по двигательным нервам. При этом нервные окончания чувствительных нервов, по сути дела, представляют собой уже известные нам рецепторы, которые непосредственно получают сведения о состоянии органов, тканей и окружающей среды. Кроме того в составе периферической нервной системы имеются специальные нервные узлы, которые играют роль своеобразных подстанций для предварительной обработки информации.
    Одной нервной системы оказалось недостаточно для регуляции жизнедеятельности как организма человека в целом, так и его отдельных органов и систем. В процессе эволюции сформировался еще один путь передачи информации внутри организма - эндокринная система. При участии эндокринной системы информация от одного органа к другому передается с помощью специальных химических веществ - гормонов. Гормоны имеют разную химическую природу. Они могут быть белками (например, уже упоминавшийся инсулин), низкомолекулярными белками (пептидами - например, антидиуретический гормон),производными липидов (стероидные гормоны, в том числе половые гормоны, или такой важный регулятор гомеостаза натрия, как алъдостерон) или аминокислот (гормоны щитовидной железы). Гормон воздействует непосредственно на клетку, проникая внутрь нее либо связываясь с расположенными на клеточной мембране специальными гормональными рецепторами. В любом случае под действием гормонов резко меняется деятельность клеток, а затем отдельных органов и тканей в целом. Например, антидиуретический гормон, вырабатывающийся в области головного мозга, называемой гипоталамусом, сообщает о необходимости экономить воду для предотвращения обезвоживания организма. Другой очень важный белок-гормон -инсулин. Он продуцируется в так называемых B-клетках островков Лангерганса поджелудочной железы. При дефиците этого гормона клетки организма перестают нормально усваивать глюкозу и развивается такое серьезное заболевание, как сахарный диабет.
    Гормоны образуются в разных органах (эндокринные органы, или железы внутренней секреции): головном мозгу (такие его участки, как гипоталамус и гипофиз), щитовидных и паращитовидных железах, поджелудочной железе, надпочечниках и ряде других. Многие органы, например та же поджелудочная железа или сердце, помимо других могут иметь и эндокринную функцию. В частности почки, выполняя в организме множество обязанностей, вырабатывают ряд очень важных для нормальной жизнедеятельности гормонов. Контролируя деятельность нашего организма, нервная и эндокринная системы тесно взаимодействуют между собой.

Печень строение, функции, болезни и желчный пузырь

Настройки просмотра комментариев

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".

Что губит нашу печень и как ее восстановить

Что губит нашу печень и как ее восстановить

Когда-то поражения печени связывали в основном с алкоголизмом

Но в последние годы медики обнаружили, что ожирение печени все чаще встречается и у совершенно непьющих людей, и связано оно с неправильным выбором пищи и злоупотреблением лекарствами.

Болезнь от лекарств

 

В последние годы все чаще наблюдаются случаи лекарственного поражения печени. К определенному возрасту мы приходим с целым букетом болезней. Лечение этих заболеваний проводится по утвержденным стандартам, включающим несколько препаратов. Некоторые лекарственные средства имеют потенциальный гепатотоксический эффект (то есть приводят к поражению печени), который надо отслеживать. И врачи об этом знают. Но у нас очень популярно самолечение, применение различных «лекарственных трав». Использование их на фоне назначенной терапии может многократно увеличить вероятность развития поражения печени.

>Имеет значение также несоблюдение режима дозирования, правил приема лекарств, одновременное употребление алкоголя или продуктов, которые изменяют фармакологическое действие назначенных препаратов. Важнейший фактор риска лекарственного поражения печени – полипрагмазия, то есть одновременный прием сразу нескольких препаратов. Немаловажную роль может сыграть и так называемый «каскад назначений», когда побочный эффект от лекарства воспринимается как самостоятельное заболевание и его начинают лечить новыми препаратами.

 

Чаще лекарственное поражение печени встречается у детей до 3 лет и взрослых старше 40 лет, женщины предрасположены к этому больше, чем мужчины. Многое зависит и от индивидуальной активности ферментной системы печеночных клеток.

Опасное молчание

Когда нужно проверить печень?- если вам больше 50 лет;
- при сахарном диабете и ожирении, так как печень реагирует на увеличение жировой массы тела;
- если в семье были случаи сахарного диабета;
- во время беременности;
- при использовании противозачаточных препаратов;
- при длительном применении лекар­ственных препаратов.

В печени нет нервных окончаний, поэтому она не болит, даже когда в ней идет разрушительный процесс. Ранние стадии заболеваний, как правило, протекают почти бессимптомно. Постоянная слабость и апатия, сонливость, легкая тошнота – все это настолько широкая симптоматика, что мало кто заподозрит в своих неприятностях печень.

Чтобы правильно оценить состояние органа, необходимо исследовать структуру и функцию печени. Для этого придется прежде всего посетить гастроэнтеролога, который порекомендует программу обследования. Обязательно надо провести УЗИ, сделать исследование крови на «печеночные пробы», содержание холестерина, уровень глюкозы крови и маркеры вирусных гепатитов. Все это позволит вовремя выявить неприятные изменения и начать лечение.

 

Печень – уникальный орган, который обладает удивительной способностью к самовосстановлению. Помогают ей в этом гепатопротекторы – средства, способствующие восстановлению ее клеток. В основном это препараты на основе эссенциальных фосфолипидов. Эти вещества способствуют уменьшению накопления в клетках печени жира и холестерина и восстанавливают мембрану клеток печени, благодаря чему она лучше справляется с обезвреживанием алкоголя и токсинов.

Что любит печень?

Эссенциальные фосфолипиды не вырабатываются в организме, их можно получить только извне. В первую очередь – из натурального молока и кисломолочных продуктов: кефира, йогурта, творога. Только есть эти продукты следует без сахара.

Полезны жирная морская рыба, оливковое и льняное масло, а также привычное нам подсолнечное, только нерафинированное. В них содержатся близкие к фосфолипидам по составу полиненасыщенные жиры – эйкозаноиды. К сожалению, все эти продукты очень калорийны. Поэтому, несмотря на высокую потребность, увлекаться ими нельзя.

Вопреки стереотипам, что печень «не любит» кофе, – это не совсем так. В напитке содержатся вещества, которые улучшают микроциркуляцию во внутренних органах и являются гепатопротекторами, но при условии, что выпивается не больше 1–2 чашечек эспрессо в день.

Очень полезны для печени семечки, орехи, сельдерей, шпинат, петрушка. Эти продукты доступны практически круглый год, следите, чтобы они всегда были у вас на столе.

Для сохранения здоровья печени важно ограничить сахар, картофель, мучное, каши из дробленого зерна. Избыток этих «легких» углеводов изменяет обмен веществ и приводит к жировому перерождению печени, повышает риск развития сахарного диабета, особенно – при наличии артериальной гипертонии и у людей пожилого возраста.

Сократите потребление в пищу консервов и копченостей – в них есть крайне вредные для печени и организма трансжиры, акриламид и канцерогены. А вот овощи и несладкие фрукты – основной источник полезных антиоксидантов и желчегонных веществ.

Физиология печени Печень

Физиология печени

Печень представляет собой центральный орган химического гомеостаза организма, где создается единый обменный и энергетиче¬ский пул для метаболизма белков, жиров и углеводов. К основным функциям печени относятся обмен белков, углеводов, липидов, ферментов, витаминов; водный и минеральный обмен, пигментный обмен, секреция желчи, детоксицирующая функция. Все обменные процессы в печени чрезвычайно энергоемки. Основными источниками энергии являются процессы аэробного окисления цикла Кребса и нуклеотиды, выделяющие значитель¬ное количество энергии в результате высвобождения фосфатидных связей при переходе аденозинтрифосфата в аденозиндифосфат.

Белковый обмен

Печень ответственна как за основные анаболи¬ческие, так и за катаболические процессы обмена белков. Синтез белков в печени осуществляется из свободных аминокислот. Это прежде всего экзогенные аминокислоты, поступающие с кровью воротной вены из кишечника. Приток этих аминокислот в печень зависит от количественного и качественного состава пищи, активности пищеварительных ферментов, фазы пищеварения и т. д. Колебания поступления аминокислот в нормальных условиях соответствуют суточному циклу активности печеночных клеток.
Эндогенные свободные аминокислоты образуются в организме вследствие физиологического клеточного распада в других орга¬нах. Обычно приток указанных веществ в печень относительно постоянен. Небольшое количество аминокислот образуется в самой печени из углеводов и жирных кислот.
Печень является единственным местом синтеза альбуминов, фибриногена, протромбина, проконвертина, проакцелерина. Основная масса ?-глобулинов, значительная часть ?-глобулинов, гепарина, ферментов также образуется в печени. Синтез белков и многочисленных ферментов осуществляется в гепатоцитах рибосомами. Собственные белки и ферменты печеночных клеток синтезируются на свободных рибосомах и полисомах гиалоплазмы гепатоцитов, не связанных с мембранами эндоплазматического ретикулума. Синтез белков «на экспорт» осуществляется рибосомами зернистого эндоплазматического ретикулума.
Большинство заболеваний печени с тяжелыми повреждениями паренхимы сопровождается снижением уровня как альбуминов, так и α-глобулинов. Гипоальбуминемия - один из характерных признаков острой и хронической недостаточности печени.
Синтез гама гбулинов осуществояется главным образом плазматическими клетками. Купферовские клетки печени, как показали радиоизотопные исследования, также участвуют в их синтезе. Значительное повышение уровня ?-глобулинов крови при заболеваниях печени с выраженной иммунной реакцией связано не только с общей реакцией ретикулоэндотелиальной ткани, но и с плазматической инфильтрацией.
Печень не только синтезирует такие важнейшие компоненты свертывающей системы крови, как протромбин, фактор VII, но и наряду с другими органами участвует в образовании гепарина. Вследствие этого система свертывания крови в значительной мере зависит от белковосинтетической функции печени и патологических изменений гепатоцитов.
В печени осуществляются все этапы расщепления белков до образования аммиака и мочевины. Протеолитические ферменты расщепляют тканевые и сывороточные белки до низкомолекулярных соединений. Ферменты дезаминирования, окисления, входящие в цикл Кребса, производят дальнейшее многоэтапное расщепление пептидных соединений и аминокислот. При значительных поражениях паренхимы, особенно при массивных некрозах, повышается уровень свободных аминокислот, остаточного азота в крови; при этом значительная часть свободных аминокислот выделяется с мочой. В печени из свободных аминокислот наряду с их разрушением с образованием мочевины и частичной реутилизацией, с новообразованием белков синтезируются жирные кислоты и кетоновые тела. Следовательно, фрагменты белкового обмена в печени включаются в обменные циклы других веществ.
Печень осуществляет катаболизм нуклеопротеидов с их расщеплением до аминокислот, пуриновых и пиримидиновых оснований. В печени последние превращаются в мочевую кислоту, выделяемую затем почками. Важно отметить, что конечные этапы катаболических изменений белковых тел в печени одновременно представляют ее детоксицирующую функцию.

Углеводный обмен

Печень играет центральную роль в многочисленных реакциях промежуточного обмена углеводов. Среди них особенно важны превращение галактозы в глюкозу; превращение Фруктозы в глюкозу; синтез и распад гликогена; глюконеогенез; окисление глюкозы; образование глюкуроновой кислоты.
Превращение галактозы в глюкозу. Галактоза поступает в организм в составе молочного сахара. В печени происходит ее превращение через уридиндифосфогалактозу в глюкозо-1-фосфат. При нарушении функции печени способность организма использовать галактозу снижается, на этом основана функциональная проба печени с нагрузкой галактозой.
Превращение фруктозы в глюкозу. Печень превращает фруктозу во фруктозо-1-фосфат (Ф-1-Ф) с помощью содержащейся в ней специфической фруктокиназы при участии АТФ. Фрукто-зо-1-фосфат расщепляется в печени альдолазой типа В, как и фруктозо-1, 6-дифосфат - промежуточный продукт обмена глюкозы, превращаясь в диоксиацетонфосфат и 3-фосфоглицерино-вый альдегид. Часть фруктозы под действием гексокиназы превращается в фруктозо-6-фосфат, промежуточный продукт основного пути распада глюкозы. Под действием глюкозофосфатизомера-зы фруктозо-6-фосфат превращается в глюкозо-6-фосфат (Г-6-Ф). Исследование утилизации фруктозы положено в основу одной из функциональных проб печени, которая в настоящее время в клинике используется мало.
Синтез и распад гликогена. Гликоген синтезируется из активированной глюкозы, т. е. из Г-6-Ф. Печень может синтезировать гликоген и из других продуктов углеводного обмена, например из молочной кислоты. Распад гликогена в печени происходит и гидролитически, и (преимущественно) фосфоролитически. Под действием фосфорилазы образуется Г-1-Ф, который превращается в Г-6-Ф; последний включается в различные метаболические процессы. Печень служит единственным поставщиком глюкозы в кровь, так как только под влиянием печеночной микросомальной Г-6-фосфатазы из Г-6-Ф освобождается глюкоза. Таким образом, под влиянием обратимых реакций синтеза и распада гликогена регулируется количество глюкозы в соответствии с потребностями организма. Уровень гликогена регулируется гормональными факторами: АКТГ, глюкокортикоиды и инсулин повышают содержание гликогена в печени, а адреналин, глюкагон, соматотропный гормон и тироксин понижают.
Глюконеогенез. Глюкоза может синтезироваться из различных соединений неуглеводной природы, таких, как лактат, глицерин, некоторые метаболиты цитратного цикла и глюкопластические аминокислоты (глицин, аланин, серии, треонин, валин, аспарагиновая и глютаминовая кислоты, аргинин, гистидин, пролин и оксипролин). Глюконеогенез связывает между собой обмен белков и углеводов и обеспечивает жизнедеятельность при недостатке углеводов в пище.
Образование глюкуроновой кислоты. С обменом углеводов связан синтез глюкуроновой кислоты, необходимой для конъюгации плохо растворимых веществ (фенолы, билирубин и др.) и образования смешанных полисахаридов (гиалуроновая кислота, гепарин и др.).
В основе нарушений обмена углеводов при заболеваниях печени лежат повреждения митохондрий, которые ведут к снижению окислительного фосфорилирования. Вторично страдают функции печени, требующие расхода энергии - синтез белка, эстерификация стероидных гормонов. Дефицит углеводов приводит также к усилению анаэробного гликолиза, вследствие чего в клетках накапливаются кислые метаболиты, вызывающие снижение рН. Следствием этого является разрушение лизосомальных мембран и выход в цитоплазму кислых гидролаз, вызывающих некроз гепатоцитов.

Жировой обмен

Печень играет ведущую роль в обмене липидных веществ - нейтральных жиров, жирных кислот, фосфолипидов, холестерина. Участие печени в обмене липидов тесно связано с ее желчевыделительной функцией: желчь активно участвует в ассимиляции жиров в кишечнике. При нарушении образования или выделения желчи жиры в повышенном количестве выделяются с калом. Желчь усиливает действие панкреатической липазы и вместе с рядом других веществ участвует в образовании хиломикронов. Гепатоциты с помощью микроворсинок непосредственно захватывают липиды из крови. В печени осуществляются следующие процессы обмена липидов: окисление триглицеридов, образование ацетоновых тел, синтез триглицеридов и фосфолипидов, синтез липопротеидов, синтез холестерина.
Гидролиз триглицеридов на глицерин и жирные кислоты происходит под действием внутрипеченочных липолитических ферментов. Печень является центральным местом метаболизма жирных кислот. В ней происходит синтез жирных кислот и их расщепление до ацетилкофермента А, а также образование кетоновых тел, насыщение ненасыщенных жирных кислот и их включение в ресинтез нейтральных жиров и фосфолипидов с последующим выведением в кровь и желчь. Катаболизм жирных кислот осуществляется путем ?-окисления, главной реакцией которого является активирование жирной кислоты с участием кофермента А и АТФ. Освобождающийся ацетилкофермент А подвергается полному окислению в митохондриях, в результате чего клетки обеспечиваются энергией. Следует отметить, что в печени образуется лишь 10% общего количества жирных кислот, основным местом их синтеза является жировая ткань. Кетоновые тела (ацетоуксусная, бета -оксимасляная кислоты и ацетон) образуются почти исключительно в печени. В норме их содержание в плазме не превышает 10 мг/л, а при сахарном диабете оно может увеличиться в сотни раз. Возникающий в патологических условиях кетоз связан с диссоциацией кетогенеза в печени и утилизацией кетоновых тел в других органах. Из жирных кислот, глицерина, фосфорной кислоты, холина и других оснований печень синтезирует важнейшие составные части клеточных мембран - различные фосфолипиды. Синтез нейтральных жиров и фосфолипидов связан главным образом с митохондриями, а также с гладким эндоплазматическим ретикулумом.
Синтез холестерина в основном происходит в печени и кишечнике, где образуется более 90% всего холестерина. Холестерин представляет собой важную составную часть плазмы крови и используется для синтеза кортикостероидных гормонов и витамина D. Основная масса холестерина синтезируется гладкой эндоплазматической сетью. Уровень холестерина поддерживается постоянным в результате синтеза, катаболизма и выведения избыточного количества с желчью в кишечник: пятая часть его выделяется с калом, а большая часть всасывается вновь, обеспечивая печеночно-кишечную циркуляцию. Печеночные клетки полностью ответственны за удаление избыточного количества холестерина из организма путем выведения как самого холестерина, так и его производных (желчные кислоты) с желчью. Нарушение печеночно-кишечной циркуляции вследствие окклюзии желчевыводящих путей приводит к резкому возрастанию синтеза желчных кислот из холестерина.
В печени происходит синтез липопротеидов, особой транспортной формы фосфолипидов, нейтральных жиров и холестерина. Предполагают, что фосфолипиды служат связующим звеном между белком и липидным компонентом. В зависимости от того, с какой фракцией сывороточных белков они передвигаются, при электрофорезе различают ?-, ?- и пре-?-липопротеиды. Пре-?-липопротеиды - главная транспортная форма эндогенных триглицеридов.

Пигментный обмен

Возникновение желтухи всегда обусловлено нарушением обмена билирубина, который образуется в результате распада гемоглобина эритроцитов и разрушения гема. Этот процесс является естественной составной частью постоянного обновления красной крови в организме.

Образование билирубина

Гемоглобин превращается в билирубин в ретикулоэндотелиальной системе, главным образом в печени, селезенке и костном мозге посредством сложного комплекса окислительно-восстановительных реакций. Конечным продуктом распада является биливердин, не содержащий железа и белковой части. Клетки ретикулоэндотелиальной системы выделяют в кровь непрямой, свободный билирубин. За сутки у человека распадается около 1% циркулирующих эритроцитов с образованием 100 - 250 мг билирубина, при этом 5 - 20% билирубина образуется из гемоглобина не зрелых, а преждевременно разрушенных эритроцитов и из других гемсодержащих веществ. Это так называемый шунтовои или ранний билирубин.
Исследованиями с введением в организм изотопных предшественников гема (15N- и 14С-глицин) установлено, что большинство образующихся меченых желчных пигментов выделяются с калом в виде уробилина или стеркобилина в период между 90-м и 150-м днем после введения изотопа, что соответствует продолжительности жизни эритроцитов [Gray С. Н., 1950, 1959; London J. М., 1950].
Выявлено незначительное содержание меченого пигмента в кале сразу же после применения изотопного предшественника, составляющее от 10 до 20% всей меченой пигментной экскреции, что соответствует раннему, или шунтовому, билирубину.
Значительное увеличение образования раннего билирубина обнаружено при болезнях, связанных с неэффективным эритропоэзом, таких, как железодефицитная анемия, пернициозная анемия, талассемия, сидеробластическая анемия, эритропоэтическая порфирия, свинцовое отравление. При этих состояниях количество раннего пигмента колеблется от 30 до 80% всех желчных пигментов. Больные с этой патологией имеют значительно увеличенную фекальную уробилиногенную экскрецию как следствие увеличенного тотального желчного пигментного оборота, но без укорочения жизни эритроцитов периферической крови.
Существование второго неэритроцитного компонента раннего билирубина доказано с применением меченой аминолевулиновой кислоты, являющейся маркером гема из других источников. Наиболее вероятным источником неэритроцитного гема служат печеночные протеиды: миоглобин, цитохромы, каталаза и триптофанпирролаза печени.
Экспериментально установлено, что печеночная часть раннего билирубина может увеличиваться после анестезии, применения фенобарбитала. Этим может объясняться повышение сывороточного билирубина, часто наблюдаемое непосредственно после операции [Israels L. G., 1970].

Обмен билирубина

Печень выполняет три важнейшие функции в обмене билирубина: захват билирубина из крови печеночной клеткой, связывание билирубина с глюкуроновой кислотой и выделение связанного билирубина из печеночной клетки в желчные капилляры. Перенос билирубина из плазмы в гепатоцит происходит в печеночных синусоидах.
Свободный (непрямой) билирубин отделяется от альбумина в цитоплазменной мембране, внутриклеточные протеины захватывают билирубин и, возможно, ускоряют перенос билирубина в гепатоцит (рис. 10). A. J. Levi и соавт. (1969) изолировали из цитоплазмы печени 2 неспецифических связывающих протеина, обозначенных как Y- и Z-протеины, которые, по мнению авторов, отвечают за большую часть внутриклеточного захвата билирубина. Протеин У присутствует в печени в относительно большом количестве и связывает также другие органические анионы, такие, как бромсульфалеин, метаболиты кортизона [Litmack G., 1971]. Предполагают, что печеночная мембрана активно участвует в захвате билирубина из плазмы. В подтверждение этого приводятся данные об угнетении рифампицином печеночного подъема билирубина раньше, чем включаются неспецифические связывающие протеины.
Непрямой билирубин в клетке переносится в мембраны эндоплазматической сети, где билирубин связывается с глюкуроновой кислотой. Эта реакция катализируется специфическим для билирубина ферментом УДФ-глюкуронилтрансферазой. Соединение билирубина с сильно поляризующей глюкуроновой кислотой делает его растворимым в воде, что и обеспечивает переход в желчь, фильтрацию в почках и быструю (прямую) реакцию с диазореактивом.
Рвс. 1. Схема транспорта билирубина в печеночной клетке (по L. Schiff).
А- разрушенные эритроциты; Б - ранний билирубин. В - свободный (непрямой) билирубин. 1 - синусоид; 2' - гладкий эндоплазматический ретикулум; 3 - ядро; 4 - аппарат Гольджи; 5 - желчный каналец; YZ - цитоплазматические протеины.
Образующийся пигмент называется связанным или прямым билирубином.
Новые микроаналитические методики, такие, как тонкослойная газовая хроматография и спектроскопия, позволили подтвердить первоначальную точку зрения о существовании 2 типов конъюгатов: диглюкуронида, в котором на 1 молекулу билирубина приходится 2 молекулы глюкуроновой кислоты (пигмент II), и моноглюкуронида, или соединения несвязанного билирубина и диглюкуронида (пигмент I). Многочисленными хроматографическими исследованиями показано существование конъюгатов билирубина с серной и фосфорной кислотами, но их физиологическое значение невелико.

Транспорт билирубина

Выделение билирубина в желчь представляет собой конечный этап обмена пигмента в печеночных клетках. В желчи обнаруживается лишь небольшое количество несвязанного билирубина, связывание требуется для экскреции пигмента печенью. О механизмах переноса билирубина из печени в желчь известно мало; определенную роль играет градиент концентрации. Некоторые вещества конкурируют с билирубином за путь выделения в желчь и могут вызвать желтуху. К ним относятся анаболические стероиды с С17-замещенным радикалом, рентгеноконтрастные препараты для холецистографии, бромсульфалеин. G. D. Raymond, J. Т. Galambos (1971) при исследовании максимальной экскреции билирубина у человека показали, что печень способна выделить пигмента в 10 раз больше, чем его образуется в физиологических условиях. Таким образом, у здорового человека есть большой функциональный резерв для экскреции билирубина. При ненарушенном связывании переход билирубина из печени в желчь зависит от скорости секреции желчи. Предполагают, что экскреция билирубина находится под гормональным контролем, так как скорость выделения связанного билирубина уменьшается у гипофизэктомированных животных и может быть нормализована гипофизарными гормонами или тироксином [Gartner L. M., Arias I. M., 1972]. Билирубин выделяется из печени в желчь с помощью цитоплазматических мембран билиар-ного полюса гепатоцита, лизосом и аппарата Гольджи.

Образование фекальных желчных пигментов

Связанный билирубин в желчи образует макромолекулярный комплекс (мицеллу) с холестерином, фосфолипидами и желчными солями. С желчью билирубин выводится в тонкий кишечник (рис. 11 цветной). У взрослого человека кишечные бактерии восстанавливают пигмент с образованием уробилиногена.
Небольшая часть билирубина (около 10%) восстанавливается до уробилиногена на пути в тонкий кишечник во внепеченочных желчных ходах и желчном пузыре. Из тонкого кишечника часть образовавшегося уробилиногена всасывается через кишечную стенку, попадает в v.portae и током крови переносится в печень (так называемая кишечно-печеночная циркуляция уробилиногена). В печени пигмент полностью расщепляется. Однако незначительное количество уробилиногена может попадать в общий круг кровообращения и тогда определяется в моче (0 - 4 мг/сутки).
Основное количество уробилиногена из тонкого кишечника поступает в толстый и выделяется с калом. Количество фекального уробилиногена варьирует от 47 до 276 мг в день в зависимости от массы тела и пола (у мужчин немного больше).
Исследованиями J. R. Bloomer (1970) установлено, что в норме только 50% дневной продукции билирубина выявляется в виде фекального уробилиногена. Это несоответствие связано с различными превращениями билирубина в кишечнике и методическими трудностями его определения.
Мочевая экскреция желчных пигментов. Уробилиноген, определяющийся в моче у здоровых людей в небольшом количестве, может повышаться при увеличении фекального уробилиногена (гемолиз), а также когда имеется повышенный уровень связанного билирубина в плазме. Клиническое значение имеет то, что при нарушении функции печени уробилиноген может быть обнаружен в моче до того, как выявляется желтуха. При механической желтухе уробилиноген в моче отсутствует.
Билирубин в моче (желчные пигменты) появляется только при увеличении в крови связанного (прямого) билирубина.
Внешнесекреторная функция печени. Образование и выделение желчи имеет жизненно важное значение для организма.
Желчь - сложный водный раствор органических и неорганических веществ, с осмотическими свойствами, близкими к таковым плазмы. Основными органическими компонентами желчи являются желчные кислоты, фосфолипиды, холестерин и желчные пигменты. Другие органические составляющие, включая протеины, присутствуют в очень малых концентрациях- Желчные кислоты и фосфолипиды (лецитин) составляют основную часть твердой фракции желчи. В печеночной желчи человека нормальные концентрации желчных кислот имеют значения от 3 до 45 ммоль/л (140 - 2230 мг%) или 8 - 53% общей твердой части желчи, концентрация лецитина от 1,4 до 8,1 г/л или от 9 до 21% твердой части, концентрация холестерина от 2,52 до 8,32 ммоль/л (97 - 320 мг%), что соответствует 3 - 11% твердого осадка. Концентрация билирубина определяется цифрами от 205,25 до 1197,28 мкмоль/л (12 - 70 мг%) или от 0,4 до 2% твердого осадка. В желчном пузыре концентрация всех составляющих значительно выше, что связано с реабсорбцией воды и неорганических электролитов.
Важность определенного содержания желчных кислот и фосфолипидов для растворения холестерина показана в исследованиях В. А. Галкина, В. А. Максимова (1975), М. Ф. Нестерина (1967).
Сложилось мнение, что фиксированное соотношение концентрации желчных кислот, фосфолипидов и холестерина обеспечивает им более высокую растворимость в воде.
Речь идет об образовании устойчивой мицеллы, которая впоследствии была названа липидным комплексом. На его поверхности могут адсорбироваться другие компоненты желчи [Нестерин М. Ф., 1967].
Физиологическая роль липидного комплекса заключается, таким образом, в обеспечении не только эффективного пищеварения, но и функционирования особой выделительной системы: из печени в кишечник.
Основные компоненты желчи (желчные кислоты, фосфолипиды, холестерин), всасываясь в кишечнике, постоянно совершают печеночно-кишечный круговорот, что позволяет поддерживать оптимальную концентрацию активных компонентов желчи в период пищеварения, а также разгружает обмен веществ и облегчает синтетическую работу печени. Нарушения состава желчи могут способствовать образованию конкрементов в желчевыводящих путях.
Желчные кислоты (ЖК) являются важнейшим стабилизатором коллоидного состояния желчи. Достигнуты определенные успехи в изучении обмена желчных кислот и нарушений их метаболизма при различных поражениях печени.

Биосинтез желчных кислот.

Желчные кислоты синтезируются из холестерина, и на это расходуется около 40% его содержания в организме [Dietschy I. M. et al., 1970]. В печени человека образуются две 2 4-углеродные желчные кислоты: холевая (ХК) и хенодезоксихолевая (ХДХК).
Первым этапом при синтезе холевой кислоты является 7α-гидроксилированяе холестерина с образованием 5-холестен-Зβ, 7α-диола, которое катализируется микросомальной фракцией гомогената печени. Затем через серию промежуточных реакций, включающих 12α-гидроксилирование и редуци рование двойной связи в 5 положении, образуется 5 β-холестен-3α, 73α, 12α-триол. Окисление его боковой цепи, катализируемое митохондриальной фракцией гомогената печени, приводит к образованию холевой кислоты или, точнее, холил-КоА-эстера
Структурные изменения, происходящие при преобразовании холестерина в хенодезоксихолевую кислоту, те же самые, что и при образовании ХК, за исключением введения 12α-гидроксильной группы.
Скорость синтеза ХК у людей, изученная радиоизотопным методом, составляет около 200 - 300 мг/сут и равна скорости синтеза ХДХК. Общий синтез первичных ЖК, таким образом, составляет у здорового взрослого человека приблизительно 400 - 600 мг/сут. В нормальных условиях это количество равно суточной потере ЖК с калом и мочой.
При различных состояниях, ведущих к уменьшению пула ЖК (потеря желчи через фистулу, прием холестирамина, резекция тонкой кишки), синтез ЖК увеличивается в 5 - 10 раз [Javitt N., 1968; Hauton I. et al., 1968; Mosbach E. H., 1972]. В противовес этому внутривенное или пероральное введение ЖК угнетает холатообразование [Фердман Д. П., 1966; Скуя Н. А., 1972]. Эти данные позволили прийти к заключению, что биосинтез ЖК регулируется по типу обратной отрицательной связи на основании количества ЖК, проходящих через печень в единицу времени. В опытах in vitro на крысах и на изолированной печени кролика показано, что основным ферментом, регулирующим биосинтез ЖК, является 7α-гидроксилаза; 12α-гидроксилаза может выполнять вторичную регулирующую функцию, определяя отношение ХК/ХДХК.

Конъюгация желчных кислот

Образующиеся на конечном этапе синтеза ЖК КоА-эстеры желчных кислот связываются с таурином (Т) или глицином (Г). При этом образуются тауро- и глицинконъюгаты ЖК. Отношение Г/Т конъюгатов зависит от возраста, питания, гормонального профиля и колеблется у здоровых людей от 2 до 6. Увеличение коэффициента Г/Т до 9 - 15 наблюдается при выключении активного илеального транспорта ЖК, потере желчи через фистулу желчного пузыря и приеме холестирамина, а также при изменении бактериальной флоры кишечника [Garbitt J. et al., 1971].
У здоровых людей в сыворотке крови содержится небольшое количество неконъюгированных (свободных) ЖК, а в желчи обнаруживаются только следы свободных ЖК.
Неконъюгированные ЖК менее растворимы и легко осаждаются из раствора, образуя физиологически неактивные соединения ЖК при рН 6,5 - 7,0. рН пузырной желчи колеблется от 6 до 7, а печеночной от 7,3 до 7,7, соли конъюгированных ЖК выпадают в осадок лишь при рН 4,3 - 5,0, почти не наблюдающейся в кишечнике. Конъюгация снижает константу ионизации желчных кислот. Неионизированные ЖК абсорбируются в тощей и проксимальном отделе подвздошной кишки посредством пассивной неионной диффузии со скоростью, пропорциональной их внутрикишечной концентрации и активности [Dietshy I. M. et al., 1968]. Конъюгация служит для предотвращения преждевременной абсорбции ЖК в проксимальном отделе тонкого кишечника и удерживает эти важные соединения в просвете кишки в концентрациях, достаточных для осуществления мицеллярной фазы переваривания и абсорбции жиров [Carey 1. В., 1973].
В случаях деконъюгации ЖК ненормально пролиферирующей бактериальной флорой в тонкой кишке они быстро всасываются, что может привести к недостаточной для абсорбции жиров внутрикишечной концентрации желчных кислот и стеаторее [Rosenberg I. H. et al., 1967]. Недавно было показано, что в печени человека желчные кислоты связываются не только с аминокислотами, но и сульфатными группами [Palmer R. H., Bolt M. D., 1971]. Однако в нормальных условиях этот процесс, по-видимому, не играет важной роли в метаболизме полигидроксилированных желчных кислот.
Кишечно-печеночная циркуляция желчных кислот. В нормальной желчи большинство желчных кислот не вновь синтезированы, а реабсорбированы из кишечника и доставлены в печень.
Можно выделить два пути возвращения желчных кислот. Портальный путь, когда вещества, абсорбированные из кишечника, попадают в воротную вену и транспортируются непосредственно в печень, и экстрапортальный путь, когда всосавшиеся в кишечнике вещества по лимфатическим путям проходят в лимфатический проток, а затем в верхнюю полую вену и разносятся током крови по всему организму (рис. 12). В печень эти вещества возвращаются через печеночную артерию.
Основная масса всосавшихся в кишечнике желчных кислот (98%) поступает в печень по системе воротной вены, а около 2% желчных кислот по лимфатическим путям попадают в общий кровоток, а затем захватываются печенью. ЖК, абсорбированные из просвета кишечника, попадая в воротную вену, связываются с альбумином и транспортируются в печень.
Эндотелиальный барьер печеночных синусоидов эффективен только для эритроцитов, так что желчные кислоты, как и другие вещества, связанные с белком плазмы (билирубин, бромсульфалеин, индоциан зеленый), легко проходят в пространство Диссе, приближаясь к микроворсинчатой поверхности гепатоцитов [Henry О. et al., 1972].
Фаза насыщения в процессе поглощения бромсульфалеина, а также конкурентные отношения между билирубином, бромсульфалеином и индоцианом позволяют предположить существование медиаторов - переносчиков для транспорта веществ из пространства Диссе в гепатоцит.
При однократном прохождении крови через печень извлекается около 90 - 95% ЖК. Благодаря такой эффективности захвата гепатоцитами уровень ЖК в периферической крови крайне низок. Почечный клиренс ЖК очень мал, поэтому почти все ЖК, попавшие в общий кровоток, возвращаются в печень. Деконъюгированные в кишечнике ЖК захватываются печенью менее эффективно, чем конъюгированные.
Мало изучен механизм концентрации желчных кислот внутри гепатоцитов. желчные кислоты, как и некоторые другие анионы (бромсульфалеин, флюоресцеин), достигают высокой концентрации в гепатоците перед экскрецией в желчь. Накопление вещества в гепатоците в более высокой концентрации, чем в плазме, может быть следствием активного процесса поглощения или внутриклеточного связывания. A. I. Levi и соавт. (1969) описали два внутригепатоцитных белка (обозначенные Y и Z) с высоким сродством к бромсульфалеину, билирубину и другим органическим анионам. Существование и роль подобных механизмов в накоплении и хранении желчных кислот нуждаются в изучении.
Желчные кислоты, деконъюгированные кишечной микрофлорой, в гепатоците активируются, соединяясь с КоА, и вновь конъюгируются. Затем эти желяные кислоты быстро выделяются в желчь. К рециркулирующим желчных кислот добавляется небольшое количество вновь синтезированных желчных кислот.
По данным новейших исследований можно предположить, что желчные кислоты секретируются в желчные капилляры посредством специального активного транспортного механизма, отличного от транспорте других анионов.
Поступившие в кишечник ЖК участвуют в процессе пищеварения и всасывания жиров и посте пенно абсорбируются путем пассивной неионной диффузии на протяжении тонкого кишечника. Основная часть желчных кислот активно абсорбируется в дистальном отделе подвздошной кишки.
Рис- 2. Портальный и экстрапортальный пути циркуляции желчных кислот. 1 - система кровообращения, 2 - печеночная артерия, 3 - печень; 4 - печеночные вены, 5 - воротная вена; 6 - тощая кишка, 7 - -подвздошная кишка; 8 - толстая кишка, 9 - лимфатическая система.
Около 10% ЖК, не всосавшиеся в тонком кишечнике, переходят в толстый кишечник. Соли парных желчных кислот в терминальной части тонкого кишечника и в толстом кишечнике деконъюгируются бактериями, которые содержат фермент, способный разрывать пептидную связь; такого фермента нет в пищеварительных соках. Под воздействием микрофлоры толстого кишечника происходит ряд изменений в химической структуре желчных кислот. Первым этапом становится удаление 7а-гидроксильной группы. Таким образом из первичных образуются вторичные желчные кислоты; из ХК образуется дезоксихолевая (ДХК), а из ХДХК - литохолевая (ЛХК).
В толстом кишечнике всасывается большая часть ДХК и лишь незначительное количество ЛХК, вероятно, вследствие ее малой растворимости, абсорбции каловыми массами и превращения в другие метаболиты. В печени ЛХК частично связывается с глицином или таурином, а основное количество выделяется в желчь с сульфатами. Сульфат ЛХК абсорбируется в терминальном отделе подвздошной кишки, но меньше, чем другие желчные кислоты..

Детоксицирующая и клиренсная функция печени.

Как уже указывалось, печень участвует в обезвреживании ряда эндогенных токсических продуктов клеточного метаболизма или веществ, поступивших извне. Детоксикации подвергаются вещества, образуемые микробами в кишечнике и через портальную систему попадающие в печень. Это токсические продукты обмена аминокислот - фенол, крезол, скатол, индол, аммиак. Реакции детоксикации осуществляются с помощью ферментов, связанных с гладким эндоплазматическим ретикулумом и митохондриями.
Окислительные процессы нейтрализуют ароматические углеводороды, некоторые стероидные гормоны, атофан. К окислительным процессам относятся дегидрирование этанола под действием алкогольдегидрогеназы. Последняя превращает этиловый алкоголь в альдегид с последующим его окислением.
Восстановительные реакции делают безвредными многочисленные нитросоединения, в том числе 2,4-динитрофенол, превращающиеся в аминосоединения.
Детоксикация ряда лекарственных веществ, например сердечных гликозидов, алкалоидов, происходит в результате гидролиза.
Некоторые вещества детоксицируются путем включения в синтез веществ, безразличных для организма или используемых в различных метаболических процессах (включение аммиака в синтез мочевины, нуклеиновых кислот).
Важнейшей реакцией детоксикации является конъюгация, ведущая к инактивированию или повышению растворимости и ускорению выведения образующихся продуктов. Обезвреживание происходит за счет соединения с глюкуроновой или серной кислотой. С помощью конъюгации инактивируются стероидные гормоны, билирубин, жлечные кислоты, ароматические углеводороды и их галогенопроизводные. В качестве обезвреживающих веществ в организме используются также глицерин, таурин, цистеин для образования парных соединений ЖК, бензойной кислоты, никотиновой кислоты.
Химический клиренс крови может осуществляться печенью путем избирательного поглощения вещества из крови и выделения его из организма желчью без химических превращений, например, холестерин может частично выделяться с желчью в неизмененном виде.
Нерастворимые частички удаляются из крови путем активного фагоцитоза купферовскими клетками. Фагоцитарные клиренсные функции купферовских клеток связаны прежде всего с их иммунной защитной ролью, они выступают в качестве фиксаторов иммунных комплексов. Купферовские клетки наряду с другими клетками ретикулоэндотелиальной системы фагоцитируют различные инфекционные агенты, удаляют из тока крови разрушенные эритроциты.

Обмен гормонов и витаминов

Стероидные гормоны (глюкокортикостероиды, андрогены, эстрогены, альдостерон) образуются вне печени, но ей принадлежит важнейшая роль в их инактивации и распаде. Именно печень осуществляет ферментативную инактивацию и конъюгацию стероидных гормонов с глюкуроновой и серной кислотами. Печень активно влияет на гомеостатическую регуляцию уровня глюкокортикоидных гормонов. Она синтезирует также специфический транспортный белок крови - транскортин, который связывает гидрокортизон, делая его временно неактивным.

Инактивация серотонина и гистамина

совершается путем окислительного дезаминирования с участием высокоактивной МАО и гистаминазы. Повышение концентрации гистамина может быть одной из причин кожного зуда и язвообразования в желудочно-кишечном тракте.
Печень участвует в обмене почти всех витаминов, в ней происходит их депонирование и частично разрушение. Обмен витамина А на всех этапах прямо зависит от функции печени. Всасывание поступающего с пищей жирорастворимого витамина А в кишечнике вместе с другими веществами липидной природы происходит благодаря эмульгирующему действию желчи. Большая часть витамина А накапливается печенью в мельчайших жировых капельках в цитоплазме печеночных и купферовских клеток. Так же, как и в кишечнике, в печени каротин превращается в витамин А.
При заболеваниях печени нарушаются всасывание в кишечнике, накопление в печеночной ткани и поступление витамина в кровь. Присутствие желчи в кишечнике - необходимое условие всасывания и других жирорастворимых витаминов - D, Е, К. Витамин Е (токоферол) ингибирует процессы окисления, и его недостаток в организме ведет к повреждению паренхимы печени. Витамин К участвует в синтезе факторов протромбинового комплекса, осуществляемом гепатоцитами, и недостаточное его всасывание в кишечнике служит одной из причин гипопротромбинемии и геморрагического диатеза при патологии печени.
Обмен большинства витаминов комплекса В непосредственно связан с функцией печени. Многие из них входят в состав коферментов. Функции окислительных дыхательных ферментов связаны, в частности, с присутствием в ткани витамина В1, депонируемого в форме кокарбоксилазы и участвующего в декарбоксилировании ?-кетокислот. Витамин В2 (рибофлавин) активно участвует в окислительном дезаминирования аминокислот. Витамин В5 (пантотеновая кислота) входит в состав ацетилкоэнзима А и непосредственно связан с последними этапами цикла Кребса в образовании конечных продуктов метаболизма белков, жиров, углеводов, детоксикацией ароматических аминов, сульфонамидов и др. Витамин В6 (пиридоксин) является коэнзимом ферментов, участвующих в трансаминировании и декарбоксилировании аминокислот, в катализе основных жирных кислот, входит в состав фосфорилазы, гистаминазы.

Обмен ферментов

Все метаболические процессы в печени осуществляются только благодаря содержащимся в гепатоцитах соответствующим ферментам. Синтез ферментов является одной из важнейших функций печени, а динамическое постоянство ферментных констелляций в печени - необходимое условие ее нормального функционирования. Ферменты имеют белковую природу и синтезируются рибосомами. Вместе с тем все клеточные органеллы обладают своим специфическим набором ферментов, определяющим их биологическую роль. Митохондрии содержат главным образом ферменты энергетического обмена (ферменты окислительного фосфорилирования, цикла Кребса, АТФ-азу и др.). С гранулярным эндоплазматическим ретикулумом связаны ферменты белкового синтеза, с гладкой его частью - ферменты углеводного, липидного обмена, большинства реакций детоксикации, с лизосомами - основные гидролазы.
В процессе распада большинство ферментов подвергается протеолизу. Другой путь разрушения ферментов состоит в прижизненной термической инактивации. Некоторые ферменты выделяются с желчью (щелочная фосфатаза, лейцинаминопептидаза) или с мочой (амилаза).
Патологические процессы в печени вызывают различные нарушения ферментативного равновесия в ней и изменение активности ферментов печеночного происхождения в сыворотке крови. Определение активности тех или других ферментов в сыворотке крови позволяет судить о характере и глубине поражения различных компонентов гепатоцитов.
В клинической практике ферменты разделяют по функции клеток печени и их мембран, определяющих активность этих ферментов в сыворотке крови [Хазанов А. И., 1968; Блю-гер А. Ф., 1975]. Это разделение весьма удобно для клинического анализа ферментных сдвигов. Выделяют следующие группы ферментов.
Секреторные синтезируются гепатоцитами и в физиологических условиях выделяются в плазму, выполняя в ней определенные функции. И. Тодоров называет эти ферменты собственными ферментами плазмы (сыворотки) крови. К ним относятся холинэстераза, церулоплазмин, про- и частично антикоагулянты.
Индикаторные ферменты выполняют определенные внутриклеточные функции. Некоторые из них (лактатдегидрогеназа, аланин- и аспартатаминотрансферазы, альдолаза) в физиологических условиях в небольших количествах постоянно присутствуют в плазме крови, другие выявляются в сыворотке только при глубоких повреждениях печени. Физиологическая роль ферментов, постоянно присутствующих в плазме, неясна. Предполагают, что выход ферментов в кровь в физиологических условиях связан с состоянием клеточной мембраны, так как для поддержания определенной плотности мембраны нужен постоянный расход энергии.
Вероятно, присутствие ферментов в плазме в нормальных условиях зависит от места расположения фермента в гепатоците и его способности проникать через клеточную мембрану. Индикаторные ферменты в зависимости от расположения в клетке разделяются на цитоплазматические (лактатдегидрогеназы, аланинаминотрансфераза), митохондриальные (глютаматдегидрогеназа) и ферменты, встречающиеся в обеих клеточных структурах - аспартатаминотрансфераза и малатдегидрогеназа.
Экскреторные ферменты образуются в печени и частично в других органах, в физиологических условиях выделяются с желчью (лейцинаминопептидаза, (3-глюкуронидаза, 5-нуклеотида за, щелочная фосфатаза).
Изменение активности этих групп ферментов в физиологических условиях и при различных заболеваниях печени схематично представлено на рис. 13.
Достижения клинической энзимологии в определении . места образования ферментов позволили разделить их по локализации:
1) универсально распространенные ферменты, активность которых обнаруживается не только в печени, но и в других органах - аминотрансферазы, фруктозо-1-б-дифосфатальдолаза;
2) печеночноспецифические (органоспецифические) - ферменты, активность которых исключительно или наиболее выявляется в печени. К ним относятся уроканиназа, аргиназа, фруктозо-1-фосфатальдолаза, холинэстераза, орнитинкарбамилтрансфераза, сорбитдегидрогеназа и др.;
3) клеточноспецифические ферменты печени относят преимущественно к гепатоцитам, купферовским клеткам или желчным канальцам, (5I-нуклеотидаза, щелочная фосфатаза, аденозинтрифосфатаза);
4) органеллоспецифические ферменты, как уже указывалось выше, являются маркерами определенных органелл гепатоцита: митохондриальные (глютаматдегидрогеназа, сукцинатдегидрогеназа, цитохромоксидаза), лизосомальные (кислая фосфатаза, дезоксирибонуклеаза, рибонуклеаза), микросомальные (глюкозо-6-фосфатаза).
Подобная классификация не лишена недостатков хотя бы потому, что ряд печеночноспецифических ферментов не являются абсолютно специфичными для печени. Ее несомненное достоинство в том, что она значительно расширяет и детализирует оценку функциональных повреждений гепатоцитов с помощью сывороточной ферментограммы.
Как работает печень «ЗенАлк» – эффективное аюрведическое средство от похмелья, препарат для повышения иммунитета и защиты печени на клеточном уровне ЗенАлк - Простая помощь для печени Употребление алкоголя и ожирение чреваты циррозом печени у пяти человек из тысячи Филлантус нирури уменьшает последствия негативного воздействия на печень алкоголя, табака, наркотиков и прочих токсинов